Abstract

AbstractThe fluorescent functional material prepared by combining 16‐alkyl (ferrocenyl‐methyl) ammonium bromide (Fc16AB) and dye molecule Congo red (CR) via ionic self‐assembly strategy exhibits double stimuli‐responsive behavior triggered by redox and pH value. Both the fabrication and switching mechanism of aggregates are proposed according to the cooperative binding of noncovalent interactions, including π‐π stacking, electrostatic interactions, charge transfer interaction, and amphiphilic hydrophobic association. The optimal geometry and energy transfer between monomers and aggregate are studied by means of quantum chemistry calculation and wavefunction analysis, which provides a deep and theoretical understanding for formation mechanism of ionic self‐assemblies. Moreover, the fluorescent switching behavior of assemblies upon pH was studied in detail, which opens the new way for the construction of organic light‐emitting diode (OLED).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.