Abstract

Abstract We describe a class of two-step continuous methods for the numerical integration of initial-value problems based on stiff ordinary differential equations (ODEs). These methods generalize the class of two-step Runge-Kutta methods. We restrict our attention to methods of order p = m, where m is the number of internal stages, and stage order q = p to avoid order reduction phenomenon for stiff equations, and determine some of the parameters to reduce the contribution of high order terms in the local discretization error. Moreover, we enforce the methods to be A-stable and L-stable. The results of some fixed and variable stepsize numerical experiments which indicate the effectiveness of two-step continuous methods and reliability of local error estimation will also be presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.