Abstract

Novel technologies to establish three-dimensional constructs are desired for tissue engineering. In the present study, magnetic force was used to construct multilayered keratinocyte sheets and harvest the sheets without enzymatic treatment. Our original magnetite cationic liposomes, which have a positive surface charge in order to improve adsorption, were taken up by human keratinocytes at a concentration of 33 pg of magnetite per cell. The magnetically labeled keratinocytes (2x10(6) cells, which corresponds to 5 times the confluent concentration against the culture area of 24-well plates, in order to produce 5-layered keratinocyte sheets) were seeded into a 24-well ultralow-attachment plate, the surface of which was composed of a covalently bound hydrogel layer that is hydrophilic and neutrally charged. A magnet (4000 G) was placed under the well, and the keratinocytes formed a five-layered construct in low-calcium medium (calcium concentration, 0.15 mM) after 24 h of culture. Subsequently, when the five-layered keratinocytes were cultured in high-calcium medium (calcium concentration, 1.0 mM), keratinocytes further stratified, resulting in the formation of 10-layered epidermal sheets. When the magnet was removed, the sheets were detached from the bottom of the plates, and the sheets could be harvested with a magnet. These results suggest that this novel methodology using magnetite nanoparticles and magnetic force, which we have termed "magnetic force-based tissue engineering" (Mag-TE), is a promising approach for tissue engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.