Abstract

The use of heterojunctions for metal corrosion protection is a highly innovative and challenging task. Based on the composition and structure of tungsten oxide-based heterojunctions, Z-scheme heterojunctions were designed and synthesized by the electrostatic self-assembly method using energy band-matched g-C3N4 and WO3 materials. Applied in the field of anticorrosion, they overcame the problems of poor reduction ability and transmission inefficiency of traditional materials. The Z-scheme heterojunctions ensured unidirectional electron transfer, while the aggregation of the retained strongly reduced electrons on the surface of the iron substrates provided a strong driving force for retarding corrosion occurrence. Meanwhile, the inherent shielding properties of the two-dimensional material g-C3N4 and the confinement of chloride ions as an electroactive layer hindered the penetration of the corrosive solution. After being corroded for 72 h, the corrosion impedance of the g-C3N4/WO3 heterojunction system was improved by 640.11% compared with the epoxy resin coating. In addition, the g-C3N4/W18O49 heterojunction was synthesized by using mixed valence tungsten oxide, which overcame the problems of photogenerated electron yield and lifetime, and enhanced the anticorrosion performance compared with a single g-C3N4 phase. This research provided ideas for designing efficient and environmentally friendly heterojunction anticorrosion materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call