Abstract
Endonuclease system CRISPR-Cas9 represents a powerful toolbox for the budding yeast's Saccharomyces cerevisiaegenome perturbation. The resulting double-strand breaks are preferentially repaired via highly efficient homologous recombination, which subsequently leads to marker-free genome editing. The goal of this study was to evaluate precise targeting of multiple loci simultaneously. To construct an array of independently expressingguide RNAs(gRNAs), the genes encoding them were assembled through a BioBrick construction procedure. We designed a multiplex CRISPR-Cas9 system for targeting 6 marker genes, whereby the gRNA array was expressed from a single plasmid. To evaluate the performance of the gRNA array, the activity of the designed system was assessed by the success rate of the introduction of perturbations within the target loci: successful gRNA expression, followed by target DNA double-strand breaks formation and their repair by homologous recombination led to premature termination of the coding sequence of the marker genes, resulting in the prevention of growth of the transformants on the corresponding selection media. In conclusion, we successfully introduced up to five simultaneous perturbations within single cells of yeast S. cerevisiae using the multiplex CRISPR-Cas9 system. While this has been done before, we here present an alternative sequential BioBrick assembly with the capability to accommodate many highly similar gRNA-expression cassettes, and an exhaustive evaluation of their performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.