Abstract

Quasi-cyclic (QC) low-density parity-check (LDPC) codes which are known as QC-LDPC codes, have many applications due to their simple encoding implementation by the means of cyclic shift registers. In this paper, we construct QC-LDPC codes from group rings. A group ring is a free module (at the same time a ring) constructed in a natural way from any given ring and any given group. We present a structure based on the elements of a group ring for constructing QC-LDPC codes. Some of the previously addressed methods for constructing QC-LDPC codes based on finite fields are special cases of the proposed construction method. The constructed QC-LDPC codes perform very well over the additive white Gaussian noise channel with iterative decoding in terms of bit-error probability and block-error probability. Simulation results demonstrate that the proposed codes have competitive performance in comparison with the similar existing LDPC codes. Finally, we propose a new encoding method for the proposed group ring-based QC-LDPC codes that can be implemented faster than the current encoding methods. The encoding complexity of the proposed method is analyzed mathematically, and indicates a significate reduction in the required number of operations, even when compared to the available efficient encoding methods that have linear time and space complexities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call