Abstract

This study explored the feasibility of Lactobacillus pentosus as a live vehicle to deliver and express antigen. First of all, L.pentosus transformed by electroporation with the plasmids pg611-6D (anchored) and pg612-6D (secretory) based on the xylose operon generated the recombinant strains rLppg611-6D and rLppg612-6D, respectively, expressing the D antigenic site of the spike (S) protein of Transmissible gastroenteritis virus (TGEV), for intragastric administration in mice. Secondly, we collected serum, fecal, nasal, ophthalmic, and vaginal samples from pre-immune mice and after the first immunization (on days 7, 14, 21, 28, 35, and 42) that were used to analyze the levels of immunoglobulins G and A against TGEV by using ELISA. In addition, a plaque reduction assay was performed using sera from groups pg611, pg612-6D, pg11-6D, and phosphate-buffered saline (blank control) to analyze TGEV-neutralizing antibody activity in vitro. A statistically significant difference in serum tests between groups demonstrated that rLppg612-6D induced better immunogenicity than rLppg611-6D, making rLppg612-6D the better candidate for oral vaccine. Taken together, L. pentosus possessed the potential to become a novel vector for mucosal vaccine in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.