Abstract

The respective type-1 and type-2 periplasmic binding proteins (PBPs) MglB and ArgT are believed to have evolved from a common ancestor into siblings showing topological differences in their main chain connectivity. At first glance, they show similar structure. But, more detailed examination reveals that the chain connectivity of ArgT is more convoluted than that of MglB. Reflecting that complexity, the folding of ArgT is complicated and involves intermediate folds. On the other hand, the folding of MglB is a simple two-state transition. In the present study, we constructed and characterized several chimeras made up of various subdomains of MglB and ArgT with the aim of gaining insight into the evolution of protein folding and protein structure. Although these chimeras did not fold as compactly as their parental proteins, some did exhibit cooperative folding, which suggests that novel proteins with new connectivity and new folding pathways could have emerged at a fairly high rate throughout the evolution of proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call