Abstract

A recombinant Escherichia coli (pBAB1) containing styrene monooxygenase (SMO) was developed for the conversion of styrene to enantiopure (S)-styrene oxide that is an important chiral building block in organic synthesis. The styAB genes encoding SMO was cloned into a multicopy plasmid under the tightly regulated promoter of bacterial l-arabinose operon which is inducible by l-arabinose. The recombinant showed that expression level of StyA protein and whole-cell SMO activities were varied depending on the concentration of the inducer l-arabinose. The maximum SMO activity was 108 U/g cdw when the cells were induced with 0.2% l-arabinose. SDS-PAGE and Western blot analyses indicated that whole-cell SMO activity was strongly correlated with the expression level of StyA protein. Organic-aqueous two-phase experiment could yield 50 mM enantiopure (S)-styrene oxide in organic phase in 18 h, but the recombinant SMO activity was unstable during the reaction. The expression of styAB under the control of l-arabinose promoter was significantly repressed in the presence of glucose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.