Abstract

A Synechocystis 6803 mutant carrying a chimaeric photosystem II (PSII), in which the Zea mays PsbH subunit (7.7 kDa calculated molecular mass) replaces the cyanobacterial copy (7.0 kDa), was constructed. With the exception of the N-terminal 12 amino acid extension, which has a phosphorylatable threonine, the eukaryotic polypeptide is 78% homologous to its bacterial counterpart. Biochemical characterization of this mutant shows that it expresses the engineered gene correctly and is competent for photoautotrophic growth. Fluorescence analysis and oxygen evolution measurements in the presence of exogenous acceptors indicate that the observed phenotype results from a chimaeric PSII rather than from the absence of function associated with PsbH, suggesting that the heterologous protein is assembled into a functional PSII. Inhibition of oxygen evolution by herbicides belonging to different classes shows that the sensitivity of the mutant PSII is changed only towards phenolic compounds. This result indicates slight conformational modification of the QB/herbicide binding pocket of the D1 polypeptide caused by the bulky PsbH protein in the mutant, and also suggests close structural interaction of the D1 and PsbH subunits in the topological arrangement of PSII.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call