Abstract
Pyrethroids are insecticides that are widely used in rural and urban areas worldwide. After entering the environment, pyrethroids are rapidly metabolized or degraded by various biological or abiotic methods. In this study, a single-chain variable fragment (scFv) which could simultaneously detect three pyrethroid metabolites was constructed based on a hybridoma raised against 3-phenoxybenzoic acid (3-PBA). By molecular docking, it showed that there were hydrogen bonds, hydrophobic interactions, CH-π interaction, and cation-π interaction between 3-PBA and its scFv. All the contact residues contributing to hydrogen bonds are located in VH-CDR2 or its neighboring region, and two of them were mutants of the closest germline sequence. Based on competitive ELISA, the half maximal inhibitory concentration (IC50) of the scFv for 3-PBA, 3-phenoxybenzaldehyde (PBAld), and 3-phenoxybenzyl alcohol (PBAlc) were calculated to be 0.55, 0.59, and 0.63 μgmL-1, respectively. The scFv also showed 23.91%, 13.41%, 1.15%, 1.00%, and 0.56% cross-reactivity with phenothrin, deltamethrin, fenvalerate, beta-cypermethrin, and fenpropathrin. The broad specificity of the scFv may be due to its hapten design. The scFv could be employed in class-specific immunoassays for pyrethroid metabolites with phenoxybenzyl (PB) group. It is also potentially used for characterizing degradation of pyrethroids or detecting PBAlc (PBAld) alone, and the detection results should be confirmed by other selective methods. KEY POINTS: • A scFv which can simultaneously detect 3-PBA, PBAlc, and PBAld was constructed. • Antibody informatics and binding mode of the scFv were obtained. • The reason for its broad specificity was discussed. • It could be used to monitor single or multi-pyrethroid metabolites with PB group.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.