Abstract

A number of organic synthesis involve threonine aldolase (TA), a pyridoxal phosphate (PLP)-dependent enzyme. Although the addition of exogenous PLP is necessary for the reactions, it increases the cost and complicates the purification of the product. This work constructed a PLP self-sufficient biocatalysis system for TA, which included an improvement of the intracellular PLP level and co-immobilization of TA with PLP. Engineered strain BL-ST was constructed by introducing PLP synthase PdxS/T to Escherichia coli BL21(ED3). The intracellular PLP concentration of the strain increased approximately fivefold to 48.5 μmol/gDCW. l-TA, from Bacillus nealsonii (BnLTA), was co-expressed in the strain BL-ST with PdxS/T, resulting in the engineered strain BL-BnLTA-ST. Compared with the control strain BL-BnLTA (254.1 U/L), the enzyme activity of the strain BL-BnLTA-ST reached 1518.4 U/L without the addition of exogenous PLP. An efficient co-immobilization system was then designed. The epoxy resin LX-1000HFA wrapped by polyethyleneimine (PEI) acted as a carrier to immobilize the crude enzyme solution of the strain BL-BnLTA-ST mixed with an extra 100 μM of exogenous PLP, resulting in the catalyst HFAPEI-BnLTA-STPLP 100. HFAPEI-BnLTA-STPLP 100 exhibited a half-life of approximately 450 h, and the application of the catalyst in the continuous biosynthesis of 3-[4-(methylsulfonyl) phenyl] serine had more than 180 batch reactions (>60%conv) without the extra addition of exogenous PLP. The excellent compatibility and stability of the system were further confirmed by other TAs. This work introduced a PLP self-sufficient biocatalysis system that can reduce the cost of PLP and contribute to the industrial application of TA. In addition, the system may also be applied in other PLP-dependent enzymes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call