Abstract

The xylose-fermenting yeasts (CTG clade yeasts, e.g. Scheffersomyces stipitis, Spathaspora passalidarum, Candida amazonensis and Candida jeffriesii) have the potential to be superior platforms for the conversion of lignocellulosic hydrolysate into fuel-grade ethanol and other chemical products. Here, a genetic expression system compatible with the genetic coding characteristics of CTG clade yeasts was constructed for use in xylose-fermenting yeasts. The pRACTH-gfpm plasmid based on an 18S rDNA shuttle vector was capable of stable integration into the genomes of a wide range of heterologous hosts. Green fluorescent protein was transformed and functionally expressed in S. stipitis, S. passalidarum, C. jeffriesii, C. amazonensis and Saccharomyces cerevisiae under control of the SpADH1 promoter and SpCYC1 terminator. Finally, the expression system was useful in multiple yeast hosts for construction of the plasmid pRACTH-ldh. Scheffersomyces stipitis, S. passalidarum, C. jeffriesii, C. amazonensis and S. cerevisiae were enabled to produce lactate from glucose or xylose by pRACTH-based expression of a heterologous lactate dehydrogenase. Among them, C. amazonensis (pRACTH-ldh) exhibited the highest lactate fermentation capacity, which reached a maximum of 44 g L-1 of lactate with a yield of 0.85 g lactate/g xylose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.