Abstract

A family of quadratic finite volume method (FVM) schemes are constructed and analyzed over tetrahedral meshes. In order to prove the stability and the error estimate, we propose the minimum V-angle condition on tetrahedral meshes, and the surface and volume orthogonal conditions on dual meshes. Through the technique of element analysis, the local stability is equivalent to a positive definiteness of a 9 × 9 element matrix, which is difficult to analyze directly or even numerically. With the help of the surface orthogonal condition and congruent transformation, this element matrix is reduced into a block diagonal matrix, and then we carry out the stability result under the minimum V-angle condition. It is worth mentioning that the minimum V-angle condition of the tetrahedral case is very different from a simple extension of the minimum angle condition for triangular meshes, while it is also convenient to use in practice. Based on the stability, we prove the optimal H1 and L2 error estimates, respectively, where the orthogonal conditions play an important role in ensuring the optimal L2 convergence rate. Numerical experiments are presented to illustrate our theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.