Abstract

Vibrio harveyi poses a significant threat to fish and invertebrates in mariculture, resulting in substantial financial repercussions for the aquaculture sector. Valine-glycine repeat protein G (VgrG) is essential for the type VI secretion system's (T6SS) assembly and secretion. VgrG from V. harveyi QT520 was cloned and analyzed in this study. The localization of VgrG was determined by Western blot, which revealed that it was located in the cytoplasm, secreted extracellularly, and attached to the membrane. The effectiveness of two vaccinations against V. harveyi infection—a subunit vaccine (rVgrG) and a DNA vaccine (pCNVgrG) prepared with VgrG was evaluated. The findings indicated that both vaccines provided a degree of protection against V. harveyi challenge. At 4 weeks post-vaccination (p.v.), the rVgrG and pCNVgrG exhibited relative percent survival rates (RPS) of 71.43% and 76.19%, respectively. At 8 weeks p.v., the RPS for rVgrG and pCNVgrG were 68.21% and 72.71%, respectively. While both rVgrG and pCNVgrG elicited serum antibody production, the subunit vaccinated fish demonstrated significantly higher levels of serum anti-VgrG specific antibodies than the DNA vaccine group. The result of qRT-PCR demonstrated that the expression of major histocompatibility complex (MHC) class Iα, tumor necrosis factor-alpha (TNF-α), interferon γ (IFNγ), and cluster of differentiation 4 (CD4) were up-regulated by both rVgrG and pCNVgrG. Fish vaccinated with rVgrG and pCNVgrG exhibited increased activity of acid phosphatase, alkaline phosphatase, superoxide dismutase, and lysozyme. These findings suggest that VgrG from V. harveyi holds potential for application in vaccination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call