Abstract

Structure models for each of the secondary structure regions from the Escherichia coli 16S rRNA (58 separate elements) were constructed using a constraint satisfaction modelling program to determine which helices deviated from classic A-form geometry. Constraints for each rRNA element included the comparative secondary structure, H-bonding conformations predicted from patterns of base-pair covariation, tertiary interactions predicted from covariation analysis, chemical probing data, rRNA–rRNA crosslinking information, and coordinates from solved structures. Models for each element were built using the MC-SYM modelling algorithm and subsequently were subjected to energy minimization to correct unfavorable geometry. Approximately two-thirds of the structures that result from the input data are very similar to A-form geometry. In the remaining instances, the presence of internal loops and bulges, some sequences (and sequence covariants) and accessory information require deviation from A-form geometry. The structures of regions containing more complex base-pairing arrangements including the central pseudoknot, the 530 region, and the pseudoknot involving base-pairing between G570-U571/A865-C866 and G861-C862/G867-C868 were predicted by this approach. These molecular models provide insight into the connection between patterns of H-bonding, the presence of unpaired nucleotides, and the overall geometry of each element.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call