Abstract

The autosomal dominant disorder Rieger syndrome (RIEG) shows genetic heterogeneity and has a phenotype characterized by malformations of the anterior segment of the eye, failure of the periumbilical skin to involute, and dental hypoplasia. The main locus for RIEG was mapped to the 4q25–q27 chromosomal segment using a series of cytogenetic abnormalities as well as by genetic linkage to DNA markers. Recently, abicoid-related homeobox transcription factor gene calledRIEGhas been cloned, characterized, and proven to cause the 4q25 linked RIEG. Its mode of action in the pathogenesis of RIEG was not conclusively proven, since most etiological mutations detected in theRIEGsequence caused amino acid substitutions or splice changes in the homeodomain. Through FISH analysis of a 460-kb sequence-ready map (PAC contig) aroundRIEGthat we report in this paper, we demonstrate that the 4q25 linked RIEG disorder can arise from the haploid, whole-gene deletion ofRIEG, but also from a translocation break 90 kb upstream from the gene. The data provide conclusive evidence that physical or functional haploinsufficiency of RIEG is the pathogenic mechanism for Rieger syndrome. The map also defines restriction fragments bearing sequences with a potential key regulatory role in the control of homeobox gene expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.