Abstract

The enhanced biological phosphorus removal (EBPR) process is regularly used for the treatment of wastewater, but suffers from erratic performance. Successful EBPR relies on the growth of bacteria called polyphosphate-accumulating organisms (PAOs), which store phosphorus intracellularly as polyphosphate, thus removing it from wastewater. Metabolic models have been proposed which describe the measured chemical transformations, however genetic evidence is lacking to confirm these hypotheses. The aim of this research was to generate a metagenomic library from biomass enriched in PAOs as determined by phenotypic data and fluorescence in situ hybridisation (FISH) using probes specific for the only described PAO to date, "Candidatus Accumulibacter phosphatis". DNA extraction methods were optimised and two fosmid libraries were constructed which contained 93 million base pairs of metagenomic data. Initial screening of the library for 16S rRNA genes revealed fosmids originating from a range of nonpure-cultured wastewater bacteria. The metagenomic libraries constructed will provide the ability to link phylogenetic and metabolic data for bacteria involved in nutrient removal from wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call