Abstract

We introduce a new construction algorithm for digital nets for integration in certain weighted tensor product Hilbert spaces. The first weighted Hilbert space we consider is based on Walsh functions. Dick and Pillichshammer calculated the worst-case error for integration using digital nets for this space. Here we extend this result to a special construction method for digital nets based on polynomials over finite fields. This result allows us to find polynomials which yield a small worst-case error by computer search. We prove an upper bound on the worst-case error for digital nets obtained by such a search algorithm which shows that the convergence rate is best possible and that strong tractability holds under some condition on the weights. We extend the results for the weighted Hilbert space based on Walsh functions to weighted Sobolev spaces. In this case we use randomly digitally shifted digital nets. The construction principle is the same as before, only the worst-case error is slightly different. Again digital nets obtained from our search algorithm yield a worst-case error achieving the optimal rate of convergence and as before strong tractability holds under some condition on the weights. These results show that such a construction of digital nets yields the until now best known results of this kind and that our construction methods are comparable to the construction methods known for lattice rules. We conclude the article with numerical results comparing the expected worst-case error for randomly digitally shifted digital nets with those for randomly shifted lattice rules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.