Abstract
Despite recent advancements, the time, skill, and monetary investment necessary for hardware setup and calibration are still major prohibitive factors in field data sensing. The presented research is an effort to alleviate this problem by exploring whether built-in mobile sensors such as global positioning system (GPS), accelerometer, and gyroscope can be used as ubiquitous data collection and transmission nodes to extract activity durations for construction simulation input modeling. Collected sensory data are classified using machine learning algorithms for detecting various construction equipment actions. The ability of the designed methodology in correctly detecting and classifying equipment actions was validated using sensory data collected from a front-end loader. Ultimately, the developed algorithms can supplement conventional simulation input modeling by providing knowledge such as activity durations and precedence, and site layout. The resulting data-driven simulations will be more reliable and can improve the quality and timeliness of operational decisions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.