Abstract

Multi-level heterojunction can effectively promote charge separation and transfer to improve photocatalytic hydrogen evolution activity. Based on the successful preparation of CdS/CuS heterojunction by one-pot hydrothermal method, V2O5 is introduced through the thermal decomposition of NH4VO3 for constructing V2O5/CdS/CuS(VCU) multi-level heterojunction. In this heterostructure, CdS and CuS are closely combined as mixed nanoparticles, which can boost the electron transfer (ET) process between them, and the introduction of V2O5 can increase the light absorption of the whole catalyst system. The hydrogen evolution test shows that VCU has the optimal performance with the hydrogen production rate of 1475 μmol/g/h, which is 16.4 times higher than pure CdS. According to the analysis of the binary composite structures (V2O5/CuS and V2O5/CdS), the probable ET process of VCU has been given, unraveling the internal catalytic mechanism. The present work expands the approaches for photocatalyst mechanism analysis and demonstrates the dramatic improvement in photocatalytic hydrogen production by the multi-level heterostructure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call