Abstract
Unique suspension solar evaporator is one of the effective measures to address the major bottleneck of the emerging interfacial evaporators, i.e., the accumulation of salts on the surface. Yet, it remains a considerable challenge to avoid substantial heat loss underwater. Herein, a suspension wood-based evaporator is proposed with a thermal convection structure that effectively balances the contradiction between salt-resistance ability and heat loss. Benefitting from the heat centralization due to thermal convection, such suspension evaporator exhibits an excellent steam generation rate, which increases from 1.23 to 1.63kg m-2h-1 compared to the conventional suspension evaporator. Simultaneously, the steam generation rate retention improves from 64.9% over 20 test cycles to nearly 100% compared to the interfacial evaporator. This work provides an effective pathway for exploring efficient and stable suspension evaporators, offering essential directions for the future development and application of solar-driven evaporation technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.