Abstract
We study the properties of the constructible universe, L, over intuitionistic theories. We give an extended set of fundamental operations which is sufficient to generate the universe over Intuitionistic Kripke-Platek set theory without Infinity. Following this, we investigate when L can fail to be an inner model in the traditional sense. Namely, we show that over Constructive Zermelo-Fraenkel (even with the Power Set axiom) one cannot prove that the Axiom of Exponentiation holds in L.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.