Abstract

Synthetic naphthalene pitches (SNPs) with isotropy and anisotropy were prepared by a simple thermal polycondensation method to fabricate pitch-based carbon fibers. The structural characteristic, thermal stability, phase-separation behavior, and melt-spinnability of the SNPs and the structural properties of the derived carbon fibers were systematically investigated. The results show that spinnable SNPs with controllable mesophase contents ranging from 0 to 100 vol % and softening points (210–290 °C) could be easily obtained by a nitrogen-bubbling treatment to improve their thermal stability and melt-spinnability by avoiding the phase separation of liquid crystal (LC) in the pitch. An experimental phase diagram of spinnability and mesophase content is newly proposed for predicting the spinnability of a mesophase-containing pitch. The LC has a significant influence not only on the constituents, structure, and physical properties of the SNPs but also on the final structure and properties of the corresponding pitch-based carbon fibers. The low ash content (less than 0.15 wt %) in the pitch precursor is found to have no obvious effect on the pitch spinnability and the mechanical properties of derivative large-diameter carbon fibers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.