Abstract

The developing a green and facile synthetic approach of Ag-based antibacterial nanomaterials with controlled composition, size, and shape, to acquire high antibacterial activity and long-term durability, is of vital importance and remains a challenging goal. Herein, a novel LDHs-supported Ag antibacterial nanomaterial (Ag/CoAl-LDHs) are fabricated via an in situ deposition of the Ag nanoparticles onto the CoAl-LDHs surface. X-ray diffraction pattern (XRD) and High-resolution TEM (HRTEM) measurements confirm that the uniform Ag nanoparticles (the average particle size of 16.5 nm) are highly dispersed and firmly anchored onto CoAl-LDHs surface. As revealed by x-ray photoelectron spectroscopy (XPS), the CoAl-LDHs nanoplates play the roles of both a support and a reductant without any external, and there was a redox reaction between Co2+ in LDHs layers and Ag+ in AgNO3 solution, giving rise to in situ loading of Ag nanoparticles onto LDHs. Moreover, antibacterial experiments verify that Ag/CoAl-LDHs not only have efficient antibacterial activity against both Escherichia coli and Staphylococcus aureus, but also exhibit very stable antibacterial properties for both bacteria. Therefore, this research demonstrates a successful paradigm for the rational design and preparation of new antibacterial nanomaterials with high antibacterial activity and long-term durability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call