Abstract

Interface engineering is an effective way to improve the electrochemical performance of electrode materials for LIBs. Point contact interfaces in composites are constructed by growing of Mn3O4 nanoparticles on the surface of acetylene black (AB). The prepared electrode materials exhibit excellent rate capability (355.7 mAh g−1 at 6.4 A g−1) and cycling stability (1386.7 mAh g−1 after 300 cycles at 1 A g−1). The presence of AB in the composite reduces the charge transfer resistance and improves the cycling stability of the electrode. Moreover, the interface between the composites increases the contribution of pseudocapacitance, which will facilitate the electrode kinetics. The construction of interfaces in the composites provides a promising perspective for the design of high-power density anode for LIBs. Highlights Construction of Mn3O4 nanoparticles on 0 D-AB spheres was proposed and synthesised by a facile and scalable strategy. The composite materials exhibit excellent electrochemical performance. The superior rate performance is mainly attributed to the interface effect of composite material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call