Abstract
A matrix population model is a convenient tool for summarizing per capita survival and reproduction rates (collectively vital rates) of a population and can be used for calculating an asymptotic finite population growth rate (λ) and generation time. These two pieces of information can be used for determining the status of a threatened species. The use of stage-structured population models has increased in recent years, and the vital rates in such models are often estimated using a life table analysis. However, potential bias introduced when converting age-structured vital rates estimated from a life table into parameters for a stage-structured population model has not been assessed comprehensively. The objective of this study was to investigate the performance of methods for such conversions using simulated life histories of organisms. The underlying models incorporate various types of life history and true population growth rates of varying levels. The performance was measured by comparing differences in λ and the generation time calculated using the Euler-Lotka equation, age-structured population matrices, and several stage-structured population matrices that were obtained by applying different conversion methods. The results show that the discretization of age introduces only small bias in λ or generation time. Similarly, assuming a fixed age of maturation at the mean age of maturation does not introduce much bias. However, aggregating age-specific survival rates into a stage-specific survival rate and estimating a stage-transition rate can introduce substantial bias depending on the organism’s life history type and the true values of λ. In order to aggregate survival rates, the use of the weighted arithmetic mean was the most robust method for estimating λ. Here, the weights are given by survivorship curve after discounting with λ. To estimate a stage-transition rate, matching the proportion of individuals transitioning, with λ used for discounting the rate, was the best approach. However, stage-structured models performed poorly in estimating generation time, regardless of the methods used for constructing the models. Based on the results, we recommend using an age-structured matrix population model or the Euler-Lotka equation for calculating λ and generation time when life table data are available. Then, these age-structured vital rates can be converted into a stage-structured model for further analyses.
Highlights
A matrix population model is a convenient tool for summarizing per capita survival and reproduction rates of a population, and is used for calculating an asymptotic finite population growth rate and generation time
Matrix population models are broadly categorized into age-structured (Leslie matrix; Leslie, 1945) and stage-structured (Lefkovitch matrix; Lefkovitch, 1965) models
The objective of this study is to investigate the performance of the conversion methods to estimate vital rates for stage-structured matrix population models from life tables
Summary
A matrix population model is a convenient tool for summarizing per capita survival and reproduction rates (collectively vital rates) of a population, and is used for calculating an asymptotic finite population growth rate (commonly denoted by λ) and generation time. Stage-structured matrix models are often favored when a property of individuals besides age is a better indicator of survival and reproduction (e.g., Caswell, 2001; Cochran & Ellner, 1992). Both types of models are common, the use of stage-structured population models has increased in recent years. A life table analysis is one of the main methods for obtaining age-specific vital rates
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.