Abstract

Covalent organic frameworks (COF) with periodic porous structures and tunable functionalities are a new class of crystalline polymers connected via strong covalent bonds. Constructing COF materials with high stability and porosity is attracting and essential for COFs' further functional exploration. In this work, two new covalent organic frameworks (TTA-TMTA-COF and TTA-FMTA-COF) with high surface area, large pore volume, and excellent chemical stability toward harsh conditions are designed and synthesized by integrating the methoxy functional groups into the networks. Both two COFs are further employed for iodine removal since radioactive iodine in nuclear waste has seriously threatened the natural environment and human health. TTA-TMTA-COF and TTA-FMTA-COF can capture 3.21 and 5.07g g-1 iodine, respectively. Notably, the iodine capture capacity for iodine of TTA-FMTA-COF does not show any decline after being recycled five times. These results demonstrate both COFs possess ultrahigh capacity and excellent recyclability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.