Abstract

The study elucidates that the pH shifting treatment unfolds the conformation of soybean protein isolate (SPI), enabling it to intertwine with bacterial cellulose (BC) and form SPI/BC co-assemblies. Results from intrinsic fluorescence spectroscopy and surface hydrophobicity indicate that the SPI with pH shifting treatment shows a notable blue shift in maximum emission wavelength and increased surface hydrophobicity. It demonstrates that pH shifting treatment facilitates the unfolding of SPI's molecular conformation, promoting its entanglement with high aspect ratio BC. Particle size distribution and microstructural analysis further demonstrate that the pH shifting treatment facilitates the formation of SPI/BC co-assemblies. Evaluation of processing properties reveals that the SPI/BC co-assemblies exhibited exceptional gel and emulsification properties, with gel strength and emulsifying activity respectively six and two times higher than natural SPI. This enhancement is attributed to the thickening properties of BC with a high aspect ratio and the superior hydrophobicity of SPI in its molten globule state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call