Abstract
The Hirota bilinear form and multisoliton solution for semidiscrete and fully discrete (difference–difference) versions of the supersymmetric Korteweg–de Vries (KdV) equation found by Xue et al (2013 J. Phys. A: Math. Theor 46 502001) are presented. The solitonic interaction term displays a fermionic dressing factor as in the continuous supersymmetric case. Using bilinear equations it is also shown that a new integrable semidiscrete (and fully discrete) version of supersymmetric KdV can be constructed with a simpler bilinear form but a more complicated interaction dressing. Its continuum limit is also computed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.