Abstract

In a previous paper [Adv. Appl. Math. Mech. 10 (2018), pp. 1025-1056], we used the Buchwald representation to construct several families of separable cylindrical solutions to the Navier-Lam\'{e} equation; these solutions had the property of being $2\pi$-periodic in the circumferential coordinate. In this paper, we extend the analysis and obtain the complementary set of separable solutions whose circumferential parts are elementary $2\pi$-aperiodic functions. Collectively, we construct eighteen distinct families of separable solutions; in each case, the circumferential part of the solution is one of three elementary $2\pi$-aperiodic functions. These solutions are useful for solving a wide variety of dynamical problems that involve cylindrical geometries and for which $2\pi$-periodicity in the angular coordinate is incompatible with the given boundary conditions. As illustrative examples, we show how the obtained solutions can be used to solve certain forced-vibration problems involving open cylindrical shells and open solid cylinders where (by virtue of the boundary conditions) $2\pi$-periodicity in the angular coordinate is inappropriate. As an addendum to our prior work, we also include an illustrative example of a certain type of asymmetric problem that can be solved using the particular $2\pi$-periodic subsolutions that ensue when there is no explicit dependence on the circumferential coordinate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.