Abstract

AbstractRegional, automated meteorological networks, such as the Oklahoma Mesonet can potentially provide high quality forcing data for generating gridded surfaces, but proven methods of interpolating weather variables between the station locations are needed. We compared two interpolation methods, ordinary kriging (OK) and empirical Bayesian kriging (EBK), with and without using long‐term climate imprints (CI), for creating spatially continuous, daily weather datasets. Daily meteorological variables (maximum and minimum temperature, solar radiation, and precipitation) from the Oklahoma Mesonet for the period 1997–2014 were interpolated using geoprocessing tools in ArcGIS. Cross‐validation was used for evaluation of interpolation methods, with 90% of sites chosen randomly for the training set and the remaining 10% left for validation. For all interpolation approaches, cross‐validation showed coefficient of determination (R2) values of .99 and .98 for daily maximum and minimum air temperatures, with mean absolute error (MAE) ranging from ±0.45–0.50 °C for maximum temperature and ±0.77–0.80 °C for minimum temperature. Likewise, for daily solar radiation, R2 values of .94 and .93 showed overall good prediction accuracy with MAE values 1.00 and 1.01 MJ m–2 d–1 for EBK and OK, respectively. However, for rainfall, all methods yielded R2 values ≤.67, suggesting a need for more effective interpolation method. Based on its lower computational time and lower input data requirement, OK appears preferable to the other approaches tested here to provide the daily weather data for gridded models in Oklahoma and other regions with similar monitoring networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.