Abstract

The generalized linear least square (GLLS) method can successfully construct unbiased parametric images from dynamic positron emission tomography data. Quantitative dynamic single photon emission computed tomography (SPECT) also has the potential to generate physiological parametric images. However, the high level of noise, intrinsic in SPECT, can give rise to unsuccessful voxelwise fitting using GLLS, resulting in physiologically meaningless estimates. In this paper, we systematically investigated the applicability of our recently proposed approaches to improve the reliability of GLLS to parametric image generation from noisy dynamic SPECT data. The proposed approaches include use of a prior estimate of distribution volume (V(d)), a bootstrap Monte Carlo (BMC) resampling technique, as well as a combination of both techniques. Full Monte Carlo simulations were performed to generate dynamic projection data, which were then reconstructed with and without resolution recovery, before generating parametric images with the proposed methods. Four experimental clinical datasets were also included in the analysis. The GLLS methods incorporating BMC resampling could successfully and reliably generate parametric images. For high signal-to-noise ratio (SNR) imaging data, the BMC-aided GLLS provided the best estimates of K(1) , while the BMC-V(d)-aided GLLS proved superior for estimating V(d). The improvement in reliability gained with BMC-aided GLLS in low SNR image data came at the expense of some overestimation of V(d) and increased computation time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.