Abstract
We develop a mixed-characteristic version of the Mori-Mukai technique for producing rational curves on K3 surfaces. We reduce modulo p, produce rational curves on the resulting K3 surface over a finite field, and lift to characteristic zero. As an application, we prove that all complex K3 surfaces with Picard group generated by a class of degree two have an infinite number of rational curves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.