Abstract

Photoelectrochemical (PEC) water splitting is a promising approach to convert solar radiation into hydrogen (H2) as a clean fuel. The PEC device performance depends on the light harvesting efficiency of the photoanode and the carrier dynamics (i.e. separation/transport rate) at the photoanode/electrolyte interface. Herein, we report a photoanode architecture consisting of self-organized TiO2 nanotubes (NTs) sensitized by CdS/CdSe quantum dots (QDs) and treated with a Cu-based solution to create a p-n heterojunction. Our results demonstrate that the TiO2 NTs/QDs PEC device yields a photocurrent density of 4.18 mA.cm−2 at 0.5 V vs RHE, which is 51 times higher than the device based on TiO2 NTs only (i.e., 0.08 mA.cm−2) and 7 times compared to TiO2/QDs nanoparticles (NPs) (i.e. 0.45 mA.cm−2) under one sun illumination. The p-type CuSe coating over the TiO2/QDs NTs photoanodes forms a p-n heterojunction that improves the carrier dynamics. The resulting PEC device shows a 13% improvement in the photocurrent density. In addition, employing longer TiO2 NTs improves the device's stability. Our results offer a simple and scalable method for the design and optimization of the photoanodes to enhance the performance of PEC and other optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.