Abstract

We present a novel method for numerically finding quasi-isodynamic stellarator magnetic fields with excellent fast-particle confinement and extremely small neoclassical transport. The method works particularly well in configurations with only one field period. We examine the properties of these newfound quasi-isodynamic configurations, including their transport coefficients, particle confinement and available energy for trapped-electron-instability-driven turbulence, as well as the degree to which they change when a finite pressure profile is added. We finally discuss the differences between the magnetic axes of the optimized solutions and their respective initial conditions, and conclude with the prospects for future quasi-isodynamic optimization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call