Abstract

Fe/Mn-based layered oxide cathode is regarded as a competitive candidate for sodium-ion batteries (SIBs) because of its high theoretical capacity, earth abundance and low cost. However, its poor cycling stability still remains a major bottleneck. Herein, P2/O3 biphasic Na0.67Fe0.425Mn0.425Cu0.15O2 layered oxide is successfully synthesized via a sol–gel method. It is observed that Cu substitution can facilitate the conversion of P2 to O3 phase, and the P2/O3 composite structure can be obtained with an appropriate amount of Cu. Meanwhile, in-situ XRD reveals that constructing P2/O3 composite structure can realize the highly reversible phase transition process of P2/O3–P2/P3–OP4/OP2 and decrease the lattice mismatch during Na+ insertion/extraction. Consequently, the biphasic P2/O3-Na0.67Fe0.425Mn0.425Cu0.15O2 electrode exhibits 87.1 % capacity retention after 100 cycles at 1C, while the single phase P2-Na0.67Fe0.5Mn0.5O2 electrode has only 36.4 %. Therefore, the constructing biphasic structure is proved to be an effective strategy for designing high-performance Fe/Mn-based layered oxide cathodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.