Abstract
Metal organic frameworks (MOFs) derived carbon materials have attracted much attention as hopeful electromagnetic microwave absorbents. However, the poor impedance matching and high filler content severely limited its electromagnetic absorption application. The introduction of hollow structural engineering is beneficial to improving microwave absorption performance. Herein, we designed and constructed Ni-incorporated hollow N-doped carbon nanocages (Ni/NCNs) to reveal interfacial charge transfer in electromagnetic wave attenuation. The hollow carbon structure facilitates impedance matching, highly dispersive Ni nanoparticles not only build a dense magnetic coupling network but also generate a series of Ohmic contact heterogeneous interfaces with hollow NCNs, extremely accelerating the charge transfer and enhancing conduction loss. Thanks to hollow structure, optimized impedance matching, and abundant Ohmic contact heterogeneous interfaces, the Ni50/NCNs exhibit a minimum reflection loss of −57.3 dB. The results demonstrate that Ni50/NCNs composites have great potential to be considered efficient electromagnetic wave materials, and the designed Ohmic contact heterogeneous interfaces pave the way in the study of electromagnetic wave absorption mechanisms.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.