Abstract
Rotation symmetric Boolean functions (RSBFs) have attracted widespread attention due to their good cryptographic properties. We present a new construction of RSBFs with optimal algebraic immunity on odd number of variables. The nonlinearity of the new function is much higher than other best known RSBFs with optimal algebraic immunity. The algebraic degree of the constructed n-variable RSBF can achieve the upper bound n-1 when n/2 is odd or when n/2 is a power of 2 for n-11. In addition, the constructed function can possess almost perfect immunity to fast algebraic attacks for n=11, 13, 15
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.