Abstract
We prove a gluing theorem which allows to construct an ample divisor on a rational surface from two given ample divisors on simpler surfaces. This theorem combined with the Cremona action on the ample cone gives rise to an algorithm for constructing new ample divisors. We then propose a conjecture relating continued fractions approximations and Seshadri-like constants of line bundles over rational surfaces. By applying our algorithm recursively we verify our conjecture in many cases and obtain new asymptotic estimates on these constants. Finally, we explain the intuition behind the gluing theorem in terms of symplectic geometry and propose generalizations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.