Abstract

Traditional electrode materials still face vital challenges of few active sites, low porosity, complex synthesis process, and low specific capacitance. Herein, N-doped and 3D hierarchical porous graphene nanofoam (N-GNF) is created on carbon fibers (CFs) by employing a facile, fast, and environmentally friendly strategy of N2 plasma activation. After an appropriated N2 plasma activation, the graphene nanosheets (GNSs) synthesized by Ar/CH4 plasma deposition transform into N-GNF successfully. N doping donates rich active sites and increases the hydrophilia, while hierarchical nanoarchitecture exposes an enlarged effective contact area at the interface between electrode and electrolyte and affords sufficient space for accommodating more electrolytes. The as-assembled flexible N-GNF@CFs//Zn NSs@CFs Zn ion capacitor delivered a high energy density of 105.2 Wh kg-1 at 378.6W kg-1 and initial capacity retention of 87.9% at the current of 2Ag-1 after a long cycle of 10,000.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.