Abstract

A recursive circulant graph G(N,d) has N = cdm vertices labeled from 0 to N - 1, where d ⩾ 2, m ⩾ 1, and 1 ⩽ c < d, and two vertices x,y ∈ G(N,d) are adjacent if and only if there is an integer k with 0 ⩽ k ⩽ ⌈ log d N⌉ - 1 such that x ± dk ≡ y ( mod N). With the aid of recursive structure, such class of graphs has many attractive features and was considered as a topology of interconnection networks for computing systems. The design of multiple independent spanning trees (ISTs) has many applications in network communication. For instance, it is useful for fault-tolerant broadcasting and secure message distribution. In the previous work of Yang et al. (2009), we provided a constructing scheme to build k ISTs on G(cdm,d) with d ⩾ 3, where k is the connectivity of G(cdm,d). However, the proposed constructing rules cannot be applied to the case of d = 2. For the integrity of solving the IST problem on recursive circulant graphs, this paper deals with the case of G(2m,2) using a set of different constructing rules. Especially, we show that the heights of ISTs for G(2m,2) are lower than the known optimal construction of hypercubes with the same number of vertices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call