Abstract

Developing an effective strategy to combat multi-drug-resistant (MDR) bacteria and promote wound healing without overuse of antibiotics remains an important and challenging goal. Herein, we established a synergistic reactive oxygen species (ROS) and reactive nitrogen species (RNS)-mediated nanocatalytic therapy, which was consisted of a multifunctional Cu single-atom nanozyme loaded with the l-arginine (l-Arg@Cu-SAzymes) and a low level of hydrogen peroxide (H2O2) as a trigger. l-Arg@Cu-SAzymes can possess excellent dual enzyme-like activities: catalase (CAT)-like activity that decompose H2O2 into O2, and subsequent oxidase (OXD)-like activity that convert O2 to cytotoxic superoxide anion radical (•O2−). Meanwhile, l-Arg@Cu-SAzymes can also be triggered by H2O2 to release nitric oxide (NO), which can continue to react with •O2– to generate more lethal peroxynitrite (ONOO−). Collectively, the synergistic ROS and RNS mediated by l-Arg@Cu-SAzymes endow the treatment system with an outstanding antibacterial ability against MDR bacteria and reduce the inflammation at the wound site. Furthermore, l-Arg@Cu-SAzymes-mediated NO and O2 release promote the cell proliferation, collagen synthesis, and the angiogenesis, as well as facilitate macrophage polarization to reparative M2 phenotype, thereby accelerating wound closure and tissue remodeling. Therefore, l-Arg@Cu-SAzymes-based synergistic nanocatalytic therapy can be regarded as a promising strategy for MDR bacterial infected wounds treatment, owing to their potent antibacterial efficacy and enhanced tissue remodeling effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call