Abstract

Glioma is heterogeneous disease that requires classification into subtypes with similar clinical phenotypes, prognosis or treatment responses. Metabolic-protein interaction (MPI) can provide meaningful insights into cancer heterogeneity. Moreover, the potential of lipids and lactate for identifying prognostic subtypes of glioma remains relatively unexplored. Therefore, we proposed a method to construct an MPI relationship matrix (MPIRM) based on a triple-layer network (Tri-MPN) combined with mRNA expression, and processed the MPIRM by deep learning to identify glioma prognostic subtypes. These Subtypes with significant differences in prognosis were detected in glioma (p-value < 2e-16, 95% CI). These subtypes had a strong correlation in immune infiltration, mutational signatures and pathway signatures. This study demonstrated the effectiveness of node interaction from MPI networks in understanding the heterogeneity of glioma prognosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.