Abstract

Intrahost human and simian immunodeficiency virus (HIV and SIV) evolution is marked by repeated viral escape from cytotoxic T-lymphocyte (CTL) response. Typically, the first such CTL escape starts around the time of peak viral load and completes within one or two weeks. Many authors have developed methods to quantify CTL escape rates, but existing methods depend on sampling at two or more timepoints. Since many datasets capture the dynamics of the first CTL escape at a single timepoint, we develop inference methods applicable to single timepoint datasets. To account for model uncertainty, we construct estimators which serve as lower bounds for the escape rate. These lower-bound estimators allow for statistically meaningful comparison of escape rates across different times and different compartments. We apply our methods to two SIV datasets, showing that escape rates are relatively high during the initial days of the first CTL escape and drop to lower levels as the escape proceeds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.