Abstract

Quasi-universal relations connecting the tidal deformability and the quadrupole moment of individual neutron stars are predicted by theoretical computations, but have not been measured experimentally. However, such relations are employed during the interpretation of gravitational waves and, therefore, have a direct impact on the interpretation of real data. In this work, we study how quasi-universal relations can be tested and measured from gravitational wave signals connected to binary neutron star coalescences. We study a population of $120$ binary neutron star systems and find that Advanced LIGO and Advanced Virgo at design sensitivity could find possible deviations of predicted relations if the observed neutron stars are highly spinning. In the future, a network of third generation (3G) detectors will be able to even allow a measurement of quasi-universal relations. Thus, the outlined approach provides a new test of general relativity and nuclear physics predictions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call