Abstract

Graphene is one of the most promising fillers for functional nanocomposites due to its high strength, high conductivity and high specific surface area, etc. However, its poor interfacial compatibility makes it difficult to simultaneously satisfy high strength and low gas permeability of nanocomposites. Herein, we proposed a novel strategy to regulate interfacial adhesion by fluorine-hydrogen (F-H) polar interaction in the FKM composites. The F-H polar interactions effectively induce the graphene oxide (GO) interact with the chain of fluoroelastomer (FKM) in spatial arrangements on molecular-level, promoting the construction of interconnected GO network. Specifically, a 10-fold increase in tensile strength of FKM/GO-5 with the incorporation of 5 phr GO is realized compared with pure FKM, and the oxygen permeability of FKM/GO-5 decreases by 79%. At the same filler contents, FKM/GO-5 composites exhibit higher mechanical property and lower gas permeability compared with FKM/rGO composites. Such enhanced performances make FKM/GO composites with an interconnected network very competitive for potential applications as multi-functional structural materials. The proposed strategy provides a novel effective approach for developing and designing the high-performances fluorine-based polymer nanocomposites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.