Abstract

Here is presented CAMLET that is a platform for automatic composition of inductive applications with method repositories that organize many inductive learning methods. CAMLET starts with constructing a basic design specification for inductive applications with method repositories and data type hierarchy that are specific to inductive learning algorithms. After instantiating the basic design with a given data set into a detailed design specification and then compiling it into codes, CAMLET executes them on computers. CAMLET changes the constructed specification until it goes beyond the goal accuracy given from a user. After having implemented CAMLET on UNIX platforms with Perl and C languages, we have done the case studies of constructing inductive applications for eight different data sets from the StatLog project and have compared the accuracies of the inductive applications composed by CAMLET with all the accuracies from popular inductive learning algorithms. The results have shown us that the inductive applications composed by CAMLET take the first accuracy on the average.KeywordsBack Propagation Neural NetworkHierarchy StructureInductive LearningMethod SchemeLANDSAT Satellite ImageThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.