Abstract

To develop non-toxic, highly efficient and selective fluorescence sensors was a significance research. In this work, a novel hollow fluorescence sensor was designed with biomass carbon dots (CDs), ZIF-8 and molecularly imprinted polymers (MIPs) via aqueous polymerization. The results demonstrated such unique structure fluorescence sensor exhibited fast response time, excellent stability and highly selectively towards bovine hemoglobin (BHb). Even in a complex environment, the hollow fluorescence sensor (H-ZIF-8/CDs@MIPs) still has a good recognition effect on BHb. Under an optimized condition, the hollow fluorescence sensor was quenched linearly with BHb concentration in the range of 0.058–4.5 μM with the detection limit of 15.6 nM. In addition, a possible quenching mechanism of hollow fluorescence towards BHb was confirmed resonance energy transfer (FRET). In the actual application process, the hollow fluorescence sensor showed a better detection performance towards BHb with the recoveries ranged of 98.6–101.1 %. This work provided a strategy to design green and unique hollow fluorescence sensor for practical application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call