Abstract

Perovskite solar cells (PSCs) with dopant‐free hole transporting layers (HTLs) deserved extensive research by merits of their outstanding hydrophobicity and stability. However, the low carrier mobility and poor interfacial hole extraction lead to the inferior power conversion efficiency (PCE) than that of conventional Li+ doped Spiro-OMeTAD. Here, a design of triphenylamine groups grafted triphenylene derivative (T-6TPA) as dopant-free HTLs has been presented. The larger π-conjugation in T-6TPA give rise to high hole mobility of 2.06 × 10−3 cm2V−1s−1. Moreover, the interfacial hole extraction of T-6TPA was significantly promoted when the molecules were infiltrated into perovskite before HTL deposition. The infiltration method of anti-solvent dripping (An) strategy increased PCE from 18.5% up to 20.3%, which is superior to another additive doping strategy (Ad-strategy, 19.3%). The effectiveness of An-strategy can be attributed to the construction of a coherent and homogeneous hole transport channel. The hydrophobicity and high glass transition temperature of T-6TPA also granted excellent moisture and thermal stabilities that the initial PCE could remain 80% for 60 days in air or 600 h at 60 °C. This work highlights the synergistical optimization by design of highly hole-mobile materials as well as the interfacial network construction for charge transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.